Gröbner Bases Applied to Systems of Linear Difference Equations

نویسنده

  • Vladimir P. Gerdt
چکیده

In this paper we consider systems of partial (multidimensional) linear difference equations. Specifically, such systems arise in scientific computing under discretization of linear partial differential equations and in computational high energy physics as recurrence relations for multiloop Feynman integrals. The most universal algorithmic tool for investigation of linear difference systems is based on their transformation into an equivalent Gröbner basis form. We present an algorithm for this transformation implemented in Maple. The algorithm and its implementation can be applied to automatic generation of difference schemes for linear partial differential equations and to reduction of Feynman integrals. Some illustrative examples are given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gröbner Bases and Systems Theory

We present the basic concepts and results of Gröbner bases theory for readers working or interested in systems theory. The concepts and methods of Gröbner bases theory are presented by examples. No prerequisites, except some notions of elementary mathematics, are necessary for reading this paper. The two main properties of Gröbner bases, the elimination property and the linear independence prop...

متن کامل

A Maple Package for Computing Gröbner Bases for Linear Recurrence Relations

A Maple package for computing Gröbner bases of linear difference ideals is described. The underlying algorithm is based on Janet and Janet-like monomial divisions associated with finite difference operators. The package can be used, for example, for automatic generation of difference schemes for linear partial differential equations and for reduction of multiloop Feynman integrals. These two po...

متن کامل

A Numerical Approach for Solving of Two-Dimensional Linear Fredholm Integral Equations with Boubaker Polynomial Bases

In this paper, a new collocation method, which is based on Boubaker polynomials, is introduced for the approximate solutions of a class of two-dimensional linear Fredholm integral equationsof the second kind. The properties of two-dimensional Boubaker functions are presented. The fundamental matrices of integration with the collocation points are utilized to reduce the solution of the integral ...

متن کامل

Groebner Bases Applied to Systems of Linear Difference Equations

In this paper we consider systems of partial (multidimensional) linear difference equations. Specifically, such systems arise in scientific computing under discretization of linear partial differential equations and in computational high energy physics as recurrence relations for multiloop Feynman integrals. The most universal algorithmic tool for investigation of linear difference systems is b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007